Moving Object Detection in Satellite Videos via Spatial–Temporal Tensor Model and Weighted Schatten <i>p</i>-Norm Minimization
نویسندگان
چکیده
Low-rank matrix decomposition approaches have achieved significant progress in small and dim object detection satellite videos. However, it is still challenging to achieve robust performance fast processing under complex highly heterogeneous backgrounds since video data can neither adequately fit the foreground structure nor background model existing models. In this letter, we propose a novel method based on spatial–temporal tensor structure. First, construct exploit inner spatial temporal correlation within video. Second, extend formulation with bounded noise backgrounds. This integrates low-rank background, structured sparse foreground, their noises into problem. For separation, weighted Schatten $p$ -norm incorporated provide adaptive threshold obtain singular value of tensor. Finally, proposed solved using alternative direction multipliers (ADMM) scheme. Experimental results various real scenes demonstrate superiority against compared approaches.
منابع مشابه
Low-Rank Matrix Recovery via Efficient Schatten p-Norm Minimization
As an emerging machine learning and information retrieval technique, the matrix completion has been successfully applied to solve many scientific applications, such as collaborative prediction in information retrieval, video completion in computer vision, etc. The matrix completion is to recover a low-rank matrix with a fraction of its entries arbitrarily corrupted. Instead of solving the popul...
متن کاملConvex Tensor Decomposition via Structured Schatten Norm Regularization
We study a new class of structured Schatten norms for tensors that includes two recently proposed norms (“overlapped” and “latent”) for convex-optimization-based tensor decomposition. Based on the properties of the structured Schatten norms, we analyze the performance of “latent” approach for tensor decomposition, which was empirically found to perform better than the “overlapped” approach in s...
متن کاملOn Tensor Completion via Nuclear Norm Minimization
Many problems can be formulated as recovering a low-rank tensor. Although an increasingly common task, tensor recovery remains a challenging problem because of the delicacy associated with the decomposition of higher order tensors. To overcome these difficulties, existing approaches often proceed by unfolding tensors into matrices and then apply techniques for matrix completion. We show here th...
متن کاملMoving Object Detection and Tracking in Videos
This chapter provides four sections. The first section introduces the moving object D&T infrastructure and basis of some methods for object detection and tracking (D&T) in videos. In object D&T applications, there is manual or automatic D&T process. Also, the image features, such as color, shape, texture, contours, and motion can be used to track the moving object(s) in videos. The detailed inf...
متن کاملWeighted Schatten $p$-Norm Minimization for Image Denoising with Local and Nonlocal Regularization
This paper presents a patch-wise low-rank based image denoising method with constrained variational model involving local and nonlocal regularization. On one hand, recent patch-wise methods can be represented as a low-rank matrix approximation problem whose convex relaxation usually depends on nuclear norm minimization (NNM). Here, we extend the NNM to the nonconvex schatten p-norm minimization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters
سال: 2022
ISSN: ['1558-0571', '1545-598X']
DOI: https://doi.org/10.1109/lgrs.2021.3117054